Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants.

نویسندگان

  • H Willekens
  • S Chamnongpol
  • M Davey
  • M Schraudner
  • C Langebartels
  • M Van Montagu
  • D Inzé
  • W Van Camp
چکیده

Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. We have used transgenic tobacco with approximately 10% wild-type catalase activity to study the role of catalase and effects of H2O2 stress in plants. Catalase-deficient plants showed no visible disorders at low light, but in elevated light rapidly developed white necrotic lesions on the leaves. Lesion formation required photorespiratory activity since damage was prevented under elevated CO2. Accumulation of H2O2 was not detected during leaf necrosis. Alternative H2O2-scavenging mechanisms may have compensated for reduced catalase activity, as shown by increased ascorbate peroxidase and glutathione peroxidase levels. Leaf necrosis correlated with accumulation of oxidized glutathione and a 4-fold decrease in ascorbate, indicating that catalase is critical for maintaining the redox balance during oxidative stress. Such control may not be limited to peroxisomal H2O2 production. Catalase functions as a cellular sink for H2O2, as evidenced by complementation of catalase deficiency by exogenous catalase, and comparison of catalase-deficient and control leaf discs in removing external H2O2. Stress analysis revealed increased susceptibility of catalase-deficient plants to paraquat, salt and ozone, but not to chilling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalase and Metallothionein genes expression analysis in wheat cultivars under drought stress condition

Drought stress is one of the serious problems that restricted agronomic plant production worldwide. In molecular level, the harmful effect of drought stress is mostly caused by producing of large amount of reactive oxygen species (ROS). Catalase and Metallothionein genes have a crucial role to mope the hydrogen peroxide (H2O2) resulting reducing oxidative damage. In this research the gene expre...

متن کامل

Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae.

Controversy about the importance of catalase in the detoxification of H2O2 in human erythrocytes continues. It has been suggested that catalase has no role in the clearance of H2O2 in erythrocytes. In the present study we investigated the role of catalase in the defence mechanism against oxidative stress using Saccharomyces cerevisiae. S. cerevisiae has two catalases, catalase A and catalase T....

متن کامل

Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice

Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity...

متن کامل

تأثیر نیتریک‌اکساید بر پاسخ های آنتی اکسیداتیو اسپندک (تیرۀ قیچیان) در محیط شور

In recent years, the involvement of nitric oxide (NO) in numerous physiological processes, particularly the mitigation of stress-induced negative effects on plants, has been clarified. Under salinity conditions, plants are subjected to a secondary oxidative stress.  The present work was designed to examine the exogenous application of nitric oxide (NO), in the form of its donor sodium nitr...

متن کامل

The Interactive Effect of Crocin Supplementation on the Alteration of Malondialdehyde and Cardiomyocyte Catalase in Male Rats Poisoned with Hydrogen Peroxide

Background and Objectives: Active oxygen species (ROS) are direct or indirect causes of cell damage. Continuously active heart muscle as an oxidative tissue is one of the tissues susceptible to oxidative damage. Malondialdehyde is one of the lipid peroxidation products, which is considered in the studies as an indicator of oxidative damage level. Crocin is also a carotenoid extracted from Saffr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 16  شماره 

صفحات  -

تاریخ انتشار 1997